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Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan

Received 16 September 1997

Abstract. We present new expressions of form factors of theXXZ model which satisfy
Smirnov’s three axioms. These new form factors are obtained by applying the affine quantum
groupUq(ŝl2) to the known ones obtained in our previous works. We also find the relations
among all the new and known form factors, i.e. all other form factors are obtained by applying
Uq(ŝl2) to a singlet form factor.

1. Introduction

In [1] we presented integral formulae of solutions to the quantum Knizhnik–Zamolodchikov
(q-KZ) equation [2] of level 0 associated with the vector representation of the affine quantum
groupUq(ŝl2). Those solutions satisfy Smirnov’s three axioms of form factors [3].

Throughout the study of form factors of the sine-Gordon model, Smirnov [3] found
that his three axioms are sufficient conditions of local commutativity of local fields of the
model. Smirnov also constructed the space of local fields of the sine-Gordon model [4],
from the standpoint of the form factor bootstrap formalism. Smirnov’s formulae for form
factors of the sine-Gordon model are expressed in terms of the deformed Abelian integrals,
or deformed hyperelliptic integrals [5].

Babelonet al [6] computed form factors of the restricted sine-Gordon model at the
reflectionless point, by quantizing solitons of the model. They also found null vectors of
the model [7], which lead to a set of differential equations for form factors.

A form factor was originally defined as a matrix element of a local operator. In this
paper, however, we call any vector-valued function a ‘form factor’ that satisfies Smirnov’s
three axioms. In this sense, the integral formulae given in [1] are form factors of theXXZ

model. Furthermore, we wish to consider the space of form factors of theXXZ model, or
solutions of Smirnov’s three axioms. Our earlier motivation is the question: Is the space
of form factors invariant under the action of the affine quantum groupUq(ŝl2), that is the
symmetry of theXXZ model?

Let us consider the spin12 XXZ model with the nearest-neighbour interaction:

HXXZ = −1

2

∞∑
n=−∞

(σ xn+1σ
x
n + σyn+1σ

y
n +1σzn+1σ

z
n ) (1.1)

where1 = (q + q−1)/2 and−1< q < 0.
Let V = C2 be a vector representation of the affine quantum groupUq(ŝl2). TheXXZ

HamiltonianHXXZ formally acts on· · · ⊗ V ⊗ V ⊗ · · ·. This Hamiltonian commutes with
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Uq(ŝl2). In [8, 9] the space of statesV ⊗∞ was identified with the tensor product of level
1 highest and level−1 lowest representations ofUq(ŝl2).

Since theXXZ model possessesUq(ŝl2)-symmetry, any physical quantities of the model
are expected to also possess the same symmetry. The following question is thus natural.
Letting G(ζ) be aV ⊗N -valued form factor of theXXZ model, doesπζ (y)G(ζ ), where
y ∈ Uq(ŝl2), again satisfy Smirnov’s axioms?

The answer is as follows. It is not always true thatπζ (y)G(ζ ) solves Smirnov’s axioms
even ifG(ζ) does. However, for a form factor that satisfies Smirnov’s axioms, there exists
y ∈ Uq(ŝl2) such thatπζ (y)G(ζ ) again satisfies the axioms.

This paper is organized as follows. In section 2 we summarize the results obtained in the
previous paper [1]. In section 3 we present new form factors which satisfy Smirnov’s three
axioms by applying the affine quantum groupUq(ŝl2) to form factors given in section 2.
In section 4 we show the relations among form factors obtained in sections 2 and 3. In
section 5 we give some remarks.

2. Integral formula of form factors of the XXZ model

In this section we review Smirnov’s three axioms of form factors [3] and the integral formula
of form factors of theXXZ model given in [1]. See [10, 1] for explicit expressions of
some scalar functions and homogeneous functions below.

For a fixed complex parameterq such that 0< x = −q < 1, let U be the affine
quantum groupU ′q(ŝl2) generated byei, fi, ti(i = 0, 1) [11]. SetV = Cv+ ⊕ Cv− and let
(πζ , V ), whereζ ∈ C\{0}, denote the vector representation ofU defined by

πζ (e1)(v+, v−) = ζ(0, v+) πζ (f1)(v+, v−) = ζ−1(v−, 0)

πζ (t1)(v+, v−) = (qv+, q−1v−) πζ (e0)(v+, v−) = ζ(v−, 0)

πζ (f0)(v+, v−) = ζ−1(0, v+) πζ (t0)(v+, v−) = (q−1v+, qv−).

(2.1)

Let R(ζ ), S(ζ ) = S0(ζ )R(ζ ) ∈ End(V ⊗ V ) be theR and S matrix of theXXZ model,
where the ratioS0(ζ ) is a scalar function, which satisfy the intertwining property [11]:

X(ζ1/ζ2)(πζ1 ⊗ πζ2) ◦1(y) = (πζ1 ⊗ πζ2) ◦1′(y)X(ζ1/ζ2) (2.2)

for X = R or S; 1 and1′ = σ ◦1 are coproducts ofU .
For n > 0, l > 0, n+ l = N , let V (nl) be a subspace ofV ⊗N such that

V (nl) =
⊕

∑
εi=l−n

Cvε1 ⊗ · · · ⊗ vεN .

Here we setN even such thatn ≡ l mod 2, for the simplicity. The oddN cases can be
treated similarly.

Let G(nl)
ε (ζ1, . . . , ζN) ∈ V (nl) with ε = ± be a form factor that satisfies the following

three axioms.

Axiom 1.S-matrix symmetry

Pj j+1G
(nl)
ε (. . . , ζj+1, ζj , . . .)

= Sj j+1(ζj /ζj+1)G
(nl)
ε (. . . , ζj , ζj+1, . . .) (16 j 6 N − 1) (2.3)

whereP(x ⊗ y) = y ⊗ x for x, y ∈ V .
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Axiom 2. Deformed cyclicity

P12 . . . PN−1NG
(nl)
ε (ζ2, . . . , ζN , ζ1q

−2) = εr(ζ1)D1G
(nl)
ε (ζ1, . . . , ζN) (2.4)

where r(ζ ) is an appropriate scalar function andD1 is a diagonal operator of the
form D1 = D ⊗ 1 ⊗ · · · ⊗ 1. The LHS of (2.4) is the analytic continuation of
P12 . . . PN−1NG

(nl)
ε (ζ2, . . . , ζN , ζ1) in the variableζ1.

Axiom 3. Annihilation pole condition

TheG(nl)
ε (ζ ) has simple poles atζN = σζN−1x

−1 with σ = ±, and the residue is given by

ResζN=σζN−1x−1G(nl)
ε (ζ ) = 1

2(I − εσN+1r(σζN−1x)DN

×SN−1,N−2(ζN−1/ζN−2) · · · SN−1,1(ζN−1/ζ1))G
(n−1l−1)
σε (ζ ′)⊗ uσ (2.5)

where(ζ ) = (ζ1, . . . , ζN), (ζ
′) = (ζ1, . . . , ζN−2), anduσ = v+ ⊗ v− + σv− ⊗ v+. HereDN

is of course a diagonal operator of the formDN = 1⊗ · · · ⊗ 1⊗D.

Remark 1.Note that the consistency of these three axioms implies the relationr(ζ )r(σζx) =
σN .

Remark 2.Let |vac〉i (i = 0, 1) be the ground states of theXXZ model, where the subscript
i signifies the boundary condition of the ground state. From the standpoint of the vertex
operator formalism,|vac〉i is the canonical element ofV (3i) ⊗ V (3i)

∗, whereV (3i) is
the level 1 highest weight module of the affine quantum groupU [8]. Let ϕ∗(ζ ) denote the
creation operator. Then the form factor of the local operatorO is given as follows

G
(N)
i (ζ1, . . . , ζN) = i〈vac|Oϕ∗(ζN) . . . ϕ∗(ζ1)|vac〉i .

We setG(N)
ε (ζ ) = G(N)

0 (ζ ) + εG(N)

1 (ζ ) such that the second and third axioms (2.4), (2.5)
reduce the closed form in terms ofG(N)

ε (ζ ).

In [10, 1] we constructed a solution of (2.3)–(2.5) as follows. Setm = n − 1 for
n = l and m = min(n, l) for n 6= l, and setD = D(nl) = q−N/2 diag(qn, ql). Let
1(nl)(x1, . . . , xm|z1, . . . , zn|zn+1, . . . , zN) be a homogeneous polynomial ofx’s and z’s,
antisymmetric with respect tox’s and symmetric withzj ’s (16 j 6 n) andzi ’s (n+16 i 6
N ), respectively. For such a polynomial, let us define〈1(nl)〉(x1, . . . , xm|ζ1, . . . , ζN) ∈ V ⊗N
by

〈1(nl)〉(x1, . . . , xm|ζ1, . . . , ζN)
−···−+···+ = 1(nl)(x1, . . . , xm|z1, . . . , zn|zn+1, . . . , zN)

×
n∏
j=1

ζj

( N∏
i=n+1

1

zi − zj τ 2

)
Pjj+1〈1(nl)〉(x1, . . . , xm| . . . , ζj+1, ζj , . . .)

= Rj j+1(ζj /ζj+1)〈1(nl)〉(x1, . . . , xm| . . . , ζj , ζj+1, . . .)

wherezj = ζ 2
j (16 j 6 N).

Assume thatn 6 l for a while. Then an integral formula that solves all the three axioms
(2.3)–(2.5) is given as follows

G(nl)
ε (ζ ) = G

(N)

0 (ζ )

m!

m∏
µ=1

∮
C

dxµ
2π i

9(mN)
ε (x1, . . . , xm|ζ1, . . . , ζN)〈1(nl)〉(ζ1, . . . , ζN) (2.6)

whereG(N)

0 (ζ ) is an appropriate scalar function.
The path of the integralC = C(z1, . . . , zN) and the explicit expression of the integral

kernel 9(mN)
ε are not important in this paper. See [10, 1] for details. Note that (2.6)
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ensures theS-matrix symmetry (2.3). The second axiom (2.4) and the third one (2.5) imply
the transformation properties [10] and the recursion relation [1] of the kernel9(mN)

ε (x|ζ ),
respectively.

The explicit expression of1(nl) is also unimportant in this paper. The essential point
concerning1(nl) is the following recursion relations

1(nl)(x1, . . . , xm|z1, . . . , zn|zn+1, . . . , zN)|zN=znq−2

=
m∏
µ=1

(xµ − znq−1)

m∑
ν=1

(−1)m+νh(N−2)(xν |z1,
n

ˆ. . ., zN−1)

×1(n−1l−1)(x1,
ν

ˆ. . ., xm|z1, . . . , zn−1|zn+1, . . . , zN−1) (2.7)

whereh(N)(x|z1, . . . , zN) is a homogeneous function of degreeN − 1 [10], and the degree
condition

deg1(nl) =
(
m

2

)
+ nl − n. (2.8)

Note that one can determine1(nl) recursively by using (2.7). From the antisymmetry with
respect tox’s, 1(nl) has the factor

∏
µ<ν(xµ − xν). Hence1(nl)/

∏
µ<ν(xµ − xν) is a

polynomial of degreenl−n. From the symmetry property with respect toz’s, the recursion
relation (2.7) gives values of1(nl) atnl points. Thus the polynomial1(nl) can be determined
from the initial conditions

1(0l) = 1(11) = 1 l > 0. (2.9)

3. Form factors and the action of the affine quantum group

In this section we discuss the transformation properties of the form factors given in the last
section under the action of the affine quantum groupU = U ′q(ŝl2).

For anyy ∈ U , the tensor representation(π(ζ1,...,ζN )(y), V
⊗N) is defined as follows

π(ζ1,...,ζN )(y) = (πζ1 ⊗ · · · ⊗ πζN ) ◦1(N−1)(y). (3.1)

Let us applyπ(ζ1,...,ζN )(y) to G(nl)
ε (ζ1, . . . , ζN). The action ofti ’s are trivial:

πζ (t0)G
(nl)
ε (ζ ) = qn−lG(nl)

ε (ζ ) πζ (t1)G
(nl)
ε (ζ ) = ql−nG(nl)

ε (ζ ).

The action off0 is non-trivial but the result is very simple.

Lemma 3.1.

πζ (f0)G
(nl)
ε (ζ ) = 0. (3.2)

Proof. In order to prove (3.2) it is enough to show

πζ (f0)〈1(nl)〉(x|ζ ) = 0. (3.3)

The R-matrix symmetry (2.6) of〈1(nl)〉(x|ζ ) implies that of πζ (f0)〈1(nl)〉(x|ζ ) from
the intertwining property (2.2). The arbitrary component ofπζ (f0)〈1(nl)〉(x|ζ )
can be expressed in terms of linear combination of the extreme component
(πζ (f0)〈1(nl)〉(x|ζs(1), . . . , ζs(N)))−···−+···+’s, wheres ∈ SN . Claim (3.3) thus follows from
the fact that(πζ (f0)〈1(nl)〉(x|ζ ))−···−+···+ vanishes.

Set 〈1(0)
(n−1l+1)〉(x|ζ ) = πζ (f0)〈1(nl)〉(x|ζ ). Then 1(0)

(n−1l+1)(x1, . . . , xm|z1, . . . , zn−1

|zn, . . . , zN) is proportional to (πζ (f0)〈1(nl)〉(x|ζ ))−···−+···+. Thanks to theR-matrix
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symmetry we obtain

1
(0)
(n−1l+1)(x1, . . . , xm|z1, . . . , zn−1|zn, . . . , zN)

=
N∑
k=n

∏n−1
j=1(zk − zjq−2)∏N
i=n
i 6=k
(zi − zk)q−1

1(nl)(x1, . . . , xm|z1, . . . , zn−1, zk|zn,
k

ˆ. . ., zN). (3.4)

Note that the singularity atzk = zi in the RHS of (3.4) is spurious, and hence that
1
(0)
(n−1l+1) is a homogeneous polynomial of degree

(
m

2

)+(n−1)(l+1)−n, antisymmetric with
respect toxµ’s and symmetric with respect to{z1, . . . , zn−1} and{zn, . . . , zN }, respectively.
The recursion relation

1
(0)
(n−1 l+1)(x1, . . . , xm|z1, . . . , zn−1|zn, . . . , zN)|zN=zn−1q−2

=
m∏
µ=1

(xµ − znq−1)

m∑
ν=1

(−1)m+νh(N−2)(xν |z1,
n

ˆ. . ., zN−1)

×1(n−2 l)(x1,
ν

ˆ. . ., xm|z1, . . . , zn−2|zn, . . . , zN−1)

is enough to determine1(0)
(n−1l+1) recursively. From the power counting1(0)

(0l+1) = 0. Thus

1
(0)
(n−1l+1) = 0, which implies (3.3). �

Hereafter, we wish to considerπζ (y)G(nl)(ζ ) for y ∈ U . For that purpose, let us
list the following formulae for〈1(0)

(n+1l−1)〉(x|ζ ) = πζ (e0)〈1(nl)〉(x|ζ ), 〈1(1)
(n−1l+1)〉(x|ζ ) =

πζ (e1)〈1(nl)〉(x|ζ ), and〈1(1)
(n+1l−1)〉(x|ζ ) = πζ (f1)〈1(nl)〉(x|ζ ):

1
(0)
(n+1l−1)(x1, . . . , xm|z1, . . . , zn+1|zn+2, . . . , zN) =

n+1∑
k=1

∏N
i=n+2(zi − zkq−2)∏n+1
j=1
j 6=k

(zk − zj )q−1

×1(nl)(x1, . . . , xm|z1,
k

ˆ. . ., zn+1|zk, zn+2, . . . , zN) (3.5)

1
(1)
(n−1l+1)(x1, . . . , xm|z1, . . . , zn−1|zn, . . . , zN) = ql−n+1

N∑
k=n

zk

∏n−1
j=1(zk − zjq−2)∏N
i=n
i 6=k
(zi − zk)q−1

×1(nl)(x1, . . . , xm|z1, . . . , zn−1, zk|zn,
k

ˆ. . ., zN) (3.6)

1
(1)
(n+1l−1)(x1, . . . , xm|z1, . . . , zn+1|zn+2, . . . , zN) = qn−l+1

n+1∑
k=1

z−1
k

∏N
i=n+2(zi − zkq−2)∏n+1
j=1
j 6=k

(zk − zj )q−1

×1(nl)(x1, . . . , xm|z1,
k

ˆ. . ., zn+1|zk, zn+2, . . . , zN). (3.7)

Expressions (3.5)–(3.7) can be proved in a similar manner as (3.4) was proved.
Let A0(ζ ) = G(nl)

ε (ζ ), andAj(ζ ) = πζ (e0)Aj−1(ζ ), where 16 j . ThenAj(ζ ) = 0 for
j > l − n, andAj−1(ζ ) = (scalar factor)πζ (f0)Aj (ζ ) for 16 j 6 l − n. These(l − n+ 1)
{Aj(ζ )}06j6l−n form a multiplet. Now the following natural question arises: Do allAj(ζ )’s
satisfy the three axioms (2.3)–(2.5) for a suitable choice of the diagonal operatorD?

The S-matrix symmetry is apparently satisfied by anyAj(ζ ). The second and
third axioms are unfortunately invalid unlessn = l. (Since πζ (f0)G

(nn)
ε (ζ ) = 0 =

πζ (e0)G
(nn)
ε (ζ ), the casen = l is trivial.)

However, we can consider ifπζ (y)G(nl)
ε (ζ ) do satisfy the three axioms, wherey = e1

or f1, becauseπζ (y)G(nl)
ε (ζ ) for anyy ∈ U always satisfy the first axiom (2.3). We do not
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have to restrict ourselves to the casey = e0. Actually, G̃(n+1l−1)
ε := πζ (f1)G

(nl)
ε (ζ ) solves

all the three axioms forD = q−N/2 diag(qn−1, ql+1).

Theorem 3.2.The vectorG̃(n+1l−1)
ε := πζ (f1)G

(nl)
ε (ζ ) satisfies (2.3)–(2.5) when we set the

diagonal operatorD = D(n−1l+1).

Proof. The proof is straightforward. By noticing that the LHS of (2.4) should be interpreted
as the analytic continuation in the variableζ1, we have

P12 . . . PN−1Nπ(ζ2,...,ζN ,ζ1q−2)(f1)G
(nl)
ε (ζ2, . . . , ζN , ζ1q

−2)

= (π(ζ1q−2,ζ2,...,ζN ) ◦1′(f1))P12 . . . PN−1NG
(nl)
ε (ζ2, . . . , ζN , ζ1q

−2)

= εr(ζ1)(πζ1q−2(f1)⊗ π(ζ2,...,ζN )(1)+ πζ1q−2(t−1
1 )

⊗π(ζ2,...,ζN )(f1))D
(nl)

1 G(nl)
ε (ζ1, . . . , ζN)

= εr(ζ1)D
(nl)

1 (qn−lπζ1(t
−1
1 f1t1)

⊗π(ζ2,...,ζN )(t
−1
1 t1)+ πζ1(t

−1
1 )⊗ π(ζ2,...,ζN )(f1))G

(nl)
ε (ζ1, . . . , ζN)

= εr(ζ1)(D
(nl)t−1

1 )1(πζ1(f1)⊗ π(ζ2,...,ζN )(t
−1
1 )+ πζ1(1)

⊗π(ζ2,...,ζN )(f1))G
(nl)
ε (ζ1, . . . , ζN)

= εr(ζ1)(D
(nl)t−1

1 )1G̃
(n+1l−1)
ε (ζ ). (3.8)

Thus the second axiom is proved.
The third axiom forG̃(n+1l−1)

ε (ζ ) can be proved as follows. Since the action ofπζ (f1)

produces no further singularity of form factors, we have

ResζN=σζN−1x−1G̃(n+1l−1)
ε (ζ ) = π(ζ ′,ζN−1,σ ζN−1x−1)(f1)ResζN=σζN−1x−1G(nl)

ε (ζ ).

Note thatπ(ζN−1,σ ζN−1x−1)(f1)uσ = 0. We also notice that

π(ζ ′,ζN−1,σ ζN−1x−1)(f1)SN−1,N−2(ζN−1/ζN−2) . . . SN−1,1(ζN−1/ζ1)

= SN−1,N−2(ζN−1/ζN−2) . . . SN−1,1(ζN−1/ζ1)(πζ ′(t
−1
1 )⊗ πζN−1(f1)⊗ πζN (t−1

1 )

+πζ ′(f1)⊗ πζN−1(1)⊗ πζN (t−1
1 )+ πζ ′(1)⊗ πζN−1(1)⊗ πζN (f1)) (3.9)

and that the first and the third term of the RHS of (3.9) cancel when they act on
G(n−1l−1)
σε (ζ ′)⊗D(nl)

N uσ . Thus we obtain

ResζN=σζN−1x−1G̃(n+1l−1)
ε (ζ ) = 1

2(I − εσN+1r(σζN−1x)(t
−1
1 D(nl))N

×SN−1,N−2(ζN−1/ζN−2) . . . SN−1,1(ζN−1/ζ1))G̃
(n−1l−1)
σε (ζ ′)⊗ uσ

that implies the third axiom withD = D(n−1l+1). �

Note that the diagonal operator for̃G(n+1l−1)
ε (ζ ) is D(n−1l+1) but notD(n+1l−1), so that

πζ (f1)G̃
(n+1l−1)
ε (ζ ) no longer satisfies the second and the third axioms (2.4), (2.5).

4. Relations among form factors of theXXZ model

In this section we shall find further relations amongG(nl)
ε (ζ )’s andG̃(n+1l−1)

ε (ζ )’s.
When N = 2n we have the following simple relation betweenG(nn)

ε (ζ ) and
G(n−1n+1)
ε (ζ ).

Proposition 4.1.

G(n−1n+1)
ε (ζ ) = (−1)nq−n−1πζ (e1)G

(nn)
ε (ζ ). (4.1)
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Proof. By puttingn=l it follows from (2.7) and (3.6) that1(1)
(n−1n+1) and(−1)nqn+11(n−1n+1)

have the same recursion relation and the same initial condition, and thus the two are the same.
Since the integral kernel9(mN)

ε = 9(n−1N)
ε is also common forG(nn)

ε (ζ ) andG(n−1n+1)
ε (ζ ),

we obtain (4.1). �

Two homogeneous polynomial1(1)
(n−1n+1) and1(n−1n+1) coincide up to a constant factor

as shown in proposition 4.1. The relation1(1)
(n−1l+1) and1(n−1l+1) for n < l is not so

simple. In order to establish the relation, let us introduce the symbol∼= as follows. We
denoteA(x1, . . . , xm|z1, . . . , zN) ∼= B(x1, . . . , xm|z1, . . . , zN) when

m∏
µ=1

∮
C

dxµ
2π i

9(mN)
ε (x|ζ )A(x|z) =

m∏
µ=1

∮
C

dxµ
2π i

9(mN)
ε (x|ζ )B(x|z).

Then the following relations hold.

Proposition 4.2.

1
(1)
(n−1l+1)(x1, . . . , xn|z1, . . . , zn−1|zn, . . . , zN)

∼= n(l − n+ 2)(−1)l−nql+1(1− q−2(l−n))
n−1∏
j=1

(xn − zjq−1)

×1(n−1l+1)(x1, . . . , xn−1|z1, . . . , zn−1|zn, . . . , zN). (4.2)

Proof. Relation (4.2) follows from the antisymmetry ofx’s, other than the recursion relation
and the initial condition of1(nl).

When l > n = 1(N = l + 1), by using (3.6) we have

1
(1)
(0N)(x1, . . . , xn| |z1, . . . , zN) = ql

N∑
k=1

zk
1(1l)(x1, . . . , xn|zk|z1, ˆ. . .k, zN)∏N

i=1
i 6=k
(zi − zk)q−1

. (4.3)

The RHS of (4.3) is a constant because deg1
(1)
(0N) = 0. In order to determine this constant,

we substitute the explicit expression of1(1l) [10] and putx1 = 0. Then we have

1
(1)
(0N)(x1||z1, . . . , zN) = N(−q)l+1(1− q−2(l−1)). (4.4)

WhenzN = zn−1q
−2 in (3.6) we have

1
(1)
(n−1l+1)(x1, . . . , xn|z1, . . . , zn−1|zn, . . . , zN)|zN=zn−1q−2 = (−q)

n∏
µ=1

(xµ − zn−1q
−1)

×
{ n−1∑
µ=1

(−1)n+µh(xµ)1
(1)
(n−2l)(x1,

µ

ˆ. . ., xn−1, xn|z1, . . . , zn−2|zn, . . . , zN−1)

+h(xn)1(1)
(n−2l)(x1, . . . , xn−1|z1, . . . , zn−2|zn, . . . , zN−1)

}
∼= (−q)

n∏
µ=1

(xµ − zn−1q
−1)

{ n−1∑
µ=1

(−1)n+µh(xµ)

×1(1)
(n−2l)(x1,

µ

ˆ. . ., xn−1, xn|z1, . . . , zn−2|zn, . . . , zN−1)+ 1

n− 1

×
n−1∑
µ=1

(−1)n+µh(xµ)1
(1)
(n−2l)(x1,

µ

ˆ. . ., xn−1, xn|z1, . . . , zn−2|zn, . . . , zN−1)

}
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∼= (1+ 1

n− 1
)× (−q)(n− 1)(l − n+ 2)(−1)l−nql(1− q−2(l−n))

×
n∏

µ=1

(xµ − zn−1q
−1)

n−1∑
µ=1

(−1)n+µh(xµ)
n−2∏
j=1

(xn − zjq−1)

×1(n−2l)(x1,
µ

ˆ. . ., xn−1|z1, . . . , zn−2|zn, . . . , zN−1)

= n(l − n+ 2)(−1)l−nql+1(1− q−2(l−n))
n−1∏
j=1

(xn − zjq−1)

n−1∏
µ=1

(xµ − zn−1q
−1)

×
n−1∑
µ=1

(−1)n−1+µh(xµ)1(n−2l)(x1,
µ

ˆ. . ., xn−1|z1, . . . , zn−2|zn, . . . , zN−1)

= (RHS of (4.2))|zN=zn−1q−2 (4.5)

where we use the antisymmetric property with respect tox’s, and the assumption of the
induction, in the second and third equality, respectively. Equation (4.2) follows from (4.4)
and (4.5). �

Until now, we discussed the casen 6 l. Let us constructG(nl)
ε (ζ ) with n > l

from G(nn)
ε (ζ ), the spin 0 sector of form factors. DefineG(n+1n−1)

ε (ζ ) = πζ (f1)G
(nn)
ε (ζ ).

Then G(n+1n−1)
ε (ζ ) also satisfies the three axioms withD = D(n−1n+1). By applying

f1 successively, we can obtainG(n+kn−k)
ε (ζ ) for n = 1, . . . , n, just like we constructed

G(n−kn+k)
ε (ζ ) from G(nn)

ε (ζ ) by applying e1 successively. As forG(nl)
ε (ζ ) with n > l,

πζ (e0)G
(nl)
ε (ζ ) = 0 holds. The proof is easy if you notice thatπζ (e0)G

(nn)
ε (ζ ) = 0 and

[e0, f1] = 0.
Note thatG(nl)

ε (ζ ) with n > l is a form factor; i.e.G(nl)
ε (ζ ) satisfies the three axioms of

form factors withD = D(ln). You can also show that̃G(n−1l+1)
ε (ζ ) := πζ (e1)G

(nl)
ε (ζ ) again

satisfies the three axioms withD = D(l−1n+1).
Let us summarize the relations obtained until now.

G(nn)
ε (ζ )�f00 -e0 0

�
�
�	

e1

G(n−1 n+1)
ε (ζ )�f00

@
@
@R

f1

G(n+1 n−1)
ε (ζ ) -e0 0

�
�
�	

e1

G(n−2 n+2)
ε (ζ )�f00

@
@
@R

f1
�

�
�	

e1

G̃(nn)
ε (ζ )

@
@
@R

f1

G(n+2 n−2)
ε (ζ ) -e0 0

�
�
�	

e1

G(n−3 n+3)
ε (ζ )�f00

@
@
@R

f1

G̃(n−1 n+1)
ε (ζ )

@
@
@R

f1

G(n+3 n−3)
ε (ζ ) -e0 0

�
�
�	

e1

G̃(n+1 n−1)
ε (ζ )

�
�
�	

e1
@
@
@R

f1
�

�
�	

e1
@
@
@R

f1

It is evident from this relationship thatG(n−kn+k)
ε (ζ ) and G̃(n−kn+k)

ε (ζ ) (−n 6 k 6 n)
can be obtained fromG(nn)

ε (ζ ) by applyinge1 and f1 in an appropriate order. We again
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notice thatπζ (f0)G
(nn)
ε (ζ ) = πζ (e0)G

(nn)
ε (ζ ) = 0.

We naturally have a form factorF (nn)ε (ζ ) that belongs to V (nn) such that
πζ (f1)F

(nn)
ε (ζ ) = πζ (e1)F

(nn)
ε (ζ ) = 0. We can obtainF (nn)ε (ζ ) from G(nn)

ε (ζ ) by a simple
transformation.

If G(ζ) solves the three axioms of form factors with the diagonal operatorD, then
F(ζ ) = (σ x)⊗NG(ζ ) solves them with the diagonal operatorσxD. HenceF (ln)ε (ζ ) :=
(σ x)⊗NG(nl)

ε (ζ ) and F̃ (ln)ε (ζ ) := (σ x)⊗NG̃(nl)
ε (ζ ) are also form factors of theXXZ model.

We can further show thatπζ (f1)F
(nn)
ε (ζ ) = πζ (e1)F

(nn)
ε (ζ ) = 0, andπζ (f1)F

(ln)
ε (ζ ) = 0

for n < l, πζ (e1)F
(nn)
ε (ζ ) = 0 for n > l.

Sum up the results obtained in this paper: For fixedn < l, we find eight form factors
which belong toV (nl)-sector; i.e.G(nl)

ε (ζ ), G̃(nl)
ε (ζ ), F (nl)ε (ζ ) and F̃ (nl)ε (ζ ), whereε = ±.

Since we have hadG(nl)
ε (ζ ) only when we fixn < l at the stage of [1], we get four times

solutions of the three axioms of form factor in this work.

5. Concluding remarks

In this paper, we have constructed new integral expressions of form factors of theXXZ

model, by applyingUq(ŝl2) to the form factors obtained in [1]. The axioms for the form
factor G(nl)

ε (ζ ) with the diagonal operatorD = D(nl) reduces those for the form factor
G̃(n+1l−1)
ε (ζ ) with D = D(n−1l+1) after the action off1 whenn < l; whereas the axioms

for G(nl)
ε (ζ ) with D = D(ln) reduces those for̃G(n−1l+1)

ε (ζ ) with D = D(l−1n+1) after the
action ofe1 whenn > l.

The spin 0 form factorG(nn)(ζ ) is a kind of singlet becauseπζ (f0)G
(nn)(ζ ) =

πζ (e0)G
(nn)(ζ ) = 0. In the earlier stage of this work, our goal was to decompose the space of

form factors of theXXZ model into infinitely many multiplets ofUq(sl2). AlthoughG(nl)
ε (ζ )

satisfies three axioms (2.3)–(2.5) andπζ (f0)G
(nl)
ε (ζ ) = 0 whenn < l, πζ (e0)G

(nl)
ε (ζ ) no

longer satisfies (2.3)–(2.5). For example, by similar manipulation in (3.8) we have

P12 . . . PN−1Nπ(ζ2,...,ζN ,ζ1q−2)(e0)G
(nl)
ε (ζ2, . . . , ζN , ζ1q

−2)

= εr(ζ1)D
(n+1l−1)
1 (q2(n−l)πζ1(e0)⊗ π(ζ2,...,ζN )(1)+ πζ1(t0)

⊗π(ζ2,...,ζN )(e0))G
(nl)
ε (ζ ). (5.1)

The RHS of (5.1) reduces toπζ (e0)G
(nl)
ε (ζ ) up to constant at the limitq → −1, which

corresponds theXXX model limit.
TheXXX model has the YangianY (sl2)-symmetry. The YangianY (sl2) is the minimal

quantum group which includes the universal enveloping algebraU(sl2) as a sub-Hopf
algebra. SinceU(sl2) has the symmetric coproduct unlikeUq(sl2), we may be possible
to decompose the space of form factors of theXXX model into infinitely many multiplet
of U(sl2). We hope that it is fruitful to consider theXXX model and to find some relations
among form factors of the model as obtained in this paper.
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